STT 315 Exam 1 PREP.

Preparation for Exam 1, to be held Thursday, September 14 in YOUR recitation.

ANY ERRORS IN THIS HANDOUT WILL BE CORRECTED NEXT WEEK IN LECTURES AND POSTED TO THE WEBSITE.  KINDLY NOTIFY ME OF ANY ERRORS THAT YOU DISCOVER.

I WILL POST ADDITIONAL EXERCISES THAT I WILL REVIEW WITH YOU ON THE COMING MONDAY (9-24-07) AND WEDNESDAY LECTURES.

Format of the exam:

a.  Closed book, no notes, no notes/papers, no electronics/headphones/phones of any kind, even in view (put every such thing away, out of sight).

b.  The seating you have been assigned by your instructor.

c.  Some few formulas will be given on the exam as described below.

d.  You are responsible for the material of the homework assignments, hand written lecture notes, and readings as outlined below in this preparation.

e.  Exam questions are patterned after the types of questions you have seen in class and in the homework.  This PREP is intended to summarize most of that and to provide a basis for the lectures of MW September 24, 26, which will be devoted to going over it.

Chapter 1.

            1.a.  Distinction between population (count N) and sample (count n) pp. 3-4.

            1.b.  Stem and Leaf displays.

            1.c.  Probability (area one) histograms.

            1.d.  KDE (kernel density estimate, bandwidth, done by hand for a few data values, drawn from pp. 333-334.

            1.e.  Discrete distribution, continuous distribution (values x, p(x)).

            1.f.  Continuous distribution (values x p(x)).

            1.g.  Normal distribution with mean mu and sd sigma.  Standard normal distribution (mu = 0, sigma = 1).  Using tables of standard normal (provided on exam 1) both forward and backward.   Standard scores (x – mu) / sigma have standard normal distribution if X is normal with mean mu and sd sigma.  Obtaining probabilities for X by standardization and appeal to the standard normal table.  Obtaining percentiles of X by converting percentiles of Z according to x = mu + z sigma.

            1.h.  Binomial distribution, use of binomial formula and binomial table.

            1.i.  Poisson distribution, use of Poisson table and formula. 

            1.j.   Binomial (n, p) is approximately Poisson with lambda = np provided n is large and p is near zero.

Chapter 2.  We skipped chapter 2, but I did introduce some of its topics.

            2.a.  Sample variance and sample standard deviation s (drawn from pp. 71-74).

            2.b.  Variance and standard deviation for discrete or continuous distributions (drawn froom pp. 74-76).

Chapter 5.

            5.a.  What I’ve called “Classical Probability” modeled by equally likely possible outcomes, universal set (or “Sample Space”) capital S.  Examples:  red and green dice, coins, colored balls, Jack/Jill (from lectures).        

            5b.  Basic rules for probability, complements (not = prime = superscript “C”.  

            5.c.  Addition rule for classical probabilities P(A) = #(A) / #(S). 

                       P(A union B) = P(A) + P(B) – P(A intersection B)        

I want you to see this in connection with the Venn diagram.

           5.d.  Multiplication rule for probabilities. 

                      P(A and B) = P(A) P(B | A).

It is motivated in the Classical Equally Likely setup from

                      P(AB) = #(AB) / #(S) = {#(A) / #(S)} {#(AB) / #(A)}

where {#(A)/#(S)} is just P(A) and {#(AB)/#(A)} has the natural interpretation of “conditional probability of B if we know that the outcome is in A.”  The conditional probability P(B | A) is defined by P(B | A) = P(A and B) / P(A) = P(AB) / P(A).

The addition and multiplication rules are adopted as AXIOMS for all our studies even if all outcomes are not equally probable.  It is because such rules are preserved when we derive any probability model from another one using the rules.  Also, the rules must apply if our probabilities are to conform to real world counts (since counts are the basis for classical probabilities).

           5.e.  Independence of events.  The definition is “A independent of B if P(AB) = P(A) P(B).”  A better way to think of it is P(B | A) = P(B), meaning that the probability for event B is not changed when A is known to have occurred.  It may be shown that A is independent of B if an only if each of

                                B independent of A

                                AC independent of B   etc. in all combinations

In short, nothing learned about the one changes the probability for the other.

Independence of events and random variables are hugely important concepts in statistics

          5.f.  Law of Total Probability. Total probability breaks down an event into its overlay with other (mutually disjoint) events.  For example, the probability I will realize at least 1000% return on my investment is the sum of the probabilites for

                           hotel built nearby and I realize at least 1000%

                           hotel not built nearby and I realize at least 1000%

Similarly, in WITHOUT replacement and equal probability draws from a box containing colored balls [ B B B B R R G Y Y Y ], 

                    P(B2) = P(B1 B2) + P(R1 B2) + P(G1 R2) + P(Y1 B2)

                               = P(B1 B2) + P(B1C B2)

While both forms above are correct, and give the same answer for P(B2), it is easier to work with the second one (the only thing that matters about the first draw is whether or not a black was drawn). 

         5.g.  Law of Total Probability coupled with multiplication rule.  Taking the example just above

                  P(B2) = P(B1 B2) + P(B1C B2)   total probability

                             = P(B1) P(B2 | B1) + P(B1C) P(B2 | B1C)

                             = 4/10  3/9 + 6/10  4/9 = (12 + 24)/(10  9) = 4/10

This gives P(B2) = 4/10 which is the same as P(B1).  It must be so because of “order of the deal does not matter.”

        5.h.  Bayes’ Theorem.  It is really just the definition of conditional probability in a special context.  Bayes’ idea was to update probabilities as new information is received.  He possibly found it exciting to have hit on the way to do it while at the same time having misgivings at how simple it really was.  In the end he did not publish the very work he is most universally known for.  Set in the OIL example it goes like this:

                  e.g.         P(OIL) = 0.2, P(+ | OIL) = 0.9, P(+ | OIL) = 0.3 are given

This gives a tree with root probabilities

                       P(OIL) = 0.2

                       P(OILC) = 1 – 0.2 = 0.8

Down-stream branch probabilities are (by convention)

                                     +  0.9              OIL+  0.2  0.9

          OIL  0.2

                                     -   0.1              OIL-   0.2  0.1

                                     +  0.3              OILC+  0.8  0.3

          OILC 0.8  

                                     -   0.7              OILC+  0.8  0.7

This leads to P(+) = 0.2  0.9  +  0.8  0.3 (total probability and multiplication).

So (Bayes’)  P(OIL | +) = P(OIL+) / P(+) = 0.2 0.9 / [0.2  0.9  +  0.8  0.3].

You can use Bayes’ formula (exercise 5.13.c. pg. 209) to get this answer with 

                   A = +

                   B = OIL

       5.i.  Random variables, expectation, variance, standard deviation.   A key concept of probability is the probability distribution of random variable X.  It lists the possible values x together with their probabilities p(x) (or, in continuous models, thhe density f(x)).  As an example, suppose sales of one of three options for a dessert.  Let X denote the price of a (random) purchase.  Suppose the costs of the three options are 1, 1.5, 2 (dollars) with respective probabilities 0.2, 0.3, 0.5.  These reflect the relative frequencies with which our customers purchase these options.  We then have

                      x           p(x)           x p(x)                       x2 p(x)              

                      1           0.2          1 (0.2) = 0.2               12 (0.2) = 0.2

                       1.5       0.3          1.5 (0.3) = 0.45          1.52 (0.3) = 0.675

                        2         0.5           2 (0.5) = 1                  22 (0.5) = 2            
                                  _________________________________________

                totals           1.0          E X = 1.65                  E X2 = 2.875   

From this we find Variance X = Var X =  E X2 – (E X)2  = 2.875 – 1.652 = 0.1525 and standard deviation of X = root(Var X) = root( 0.1525) = 0.39 (39 cents).  

       5.j.  Rules for expectation, variance and sd of r.v.  Key rules governing expectation, variance and standard deviation are found on a formula sheet posted to the website.  The easiest way to understand the role of these rules is to see what they have to say about the sample total returns T and sample average returns xBAR = T/n from many INDEPENDENT sales.  

Sample total return T.  Suppose we make 100 INDEPENDENT sales from the distribution in (5.i.).  Let T = X1 + .... + X100 denote the sample total of these n = 100 independent random sales amounts X1, ..., X100.  Then

                    E T = E X1 + ... + E X100 = 100 (1.65) = 165 (dollars)

                Var T = Var X1 + ..... + Var X100 because sales are INDEPENDENT

                          = 100  0.1525 = 15.25 (dollars)

                  sd T = root(Var T) = 10 root(0.1525) = 3.9 (dollars).

The general formulas for SAMPLE TOTAL T, of independent sales, are 

                   mean of sample total T = n mu

                   variance of sample total T = n sigma^2

                   sd of sample total = root(n) sigma.

Approximate normality of sample total T.  Later in this course we will advance reasons why total sales T should be approximately normally distributed.  This is a variant of the CLT (central limit theorem).   Total sales T, in dollars, is approximately distributed as a bell (normal) curve with mean E T = $165 and s.d. T = $3.90.  One consequence is that around 95% of the time the random total sales T would fall within $(165 +/- 1.96 3.90).   

Sample mean return xBAR = T/n.  If we are instead interested in the random variable xBAR = sample mean = T/n then we have

        E xBAR = E T/900 = (E X1 + ... + E X100)/ 100 = 100 (1.65) / 100 = 1.65 (dollars)

                Var xBAR = Var T/100 = (Var X1 + ..... + Var X100)/(100^2) 

                                  = 100  0.1525 / (100^2) 

                                  =  0.1525 / 100 = 0.001525 (dollars)

                 sd xBAR = sigma / root(n) = 0.39 / root(100) = 0.039 (dollars)

The general formulas for SAMPLE AVERAGE xBAR = T/n, of independent sales, are 

                   mean of sample average xBAR = E aBAR = mu

                   variance of sample average xBAR = sigma^2 / n

                   sd of sample average xBAR = sigma / root(n).

We may interchangeably refer to the sample average as the “sample mean.”

Approximate normality of sample total average xBAR.  Later in this course we will advance reasons why aBAR should be approximately normally distributed.  This is a variant of the CLT (central limit theorem).   xBAR in dollars, is approximately distributed as a bell (normal) curve with mean E xBAR = mu = $1.65 and s.d. xBAR = sigma / root(n) = $0.39 / root(100) = 0.039.  One consequence is that around 68% of the time the random sample mean xBAR of n = 100 independent sales would fall within $(1.65 +/- 1.00  0.039).

